

Problem statement

Input: LiDAR scans $\mathbf{X} = \{\mathbf{X}_{v}\}_{v=1}^{n_{v}}$, where each scan \mathbf{X}_{v} is associated

- ζ_* : range of the first/second return
- e_* : intensity of the first /second return
- $p_d \in \{0,1\}$: ray drop mask
- $p_s \in \{0,1\}$: two return mask
- **Goal:** Render virtual LiDAR scans $\mathbf{X}_{t arphi t}$ from novel sensor poses $\mathbf{T}_{t arphi t}$.

Neural Field for LiDAR NVS

• Neural LiDAR field: $F : (\mathbf{x}, \mathbf{d}) \mapsto (\sigma, \rho, p_d)$.

• LiDAR beam rendering:

• Loss terms: $L = L_{range} + \lambda_e L_e + \lambda_d L_d + \lambda_s L_s$.

NFL **Second Second Seco**

Shengyu Huang^{1,2}, Zan Gojcic², Zian Wang^{2,3,4}, Francis Williams², Yoni Kasten², Sanja Fidler^{2,3,4}, Konrad Schindler¹, Or Litany²

- with a sensor pose $\mathbf{T}_{v} \in SE(3)$ and consists of n_{r} rays. Every ray
- $\mathbf{r}(\mathbf{0}, \mathbf{d})$ records measurements $(\zeta_1, e_1, p_d, p_s, \zeta_2, e_2)$ as:

$$H(\zeta - \frac{ct}{2}) dt , \quad H(\zeta) = H_T(\zeta)H_C(\zeta)$$

$$\cos(\theta)$$

$$\frac{\sigma_{\zeta}\rho_{\zeta}}{\zeta^{2}}\cos(\theta_{j}) d\zeta = \sum_{j=1}^{N} w_{j}\rho_{\zeta_{j}}'.$$
$$-2\alpha_{\zeta_{k}}), \quad w_{j} = \alpha_{\zeta_{j}} \cdot \prod_{k=1}^{j-1} (1-\alpha_{\zeta_{k}}).$$

Experimental results

- Ref. frame (θ_0 , x_0 , y_0 , z_0)

- Devised the volume rendering scheme for active sensors;
- Proposed a neural field model grounded on the physical LiDAR sensing process;
- Proposed a closed-loop evaluation protocol to evaluate NVS performance;
- Developed a LiDAR simulator that supports *diverging beam* profile.

Datasets and evaluation protocol

TownClean and TownReal datasets that are simulated using idealised and diverging beam profile, respectively; • Waymo Interp: four static scenes from Waymo Open datasets, 40/10 scans for training/testing;

Waymo NVS: same scenes, train on entire 50 scans \rightarrow test from different sensor trajectory \rightarrow re-train on the novels views \rightarrow test on the original 50 scans.

rst range	Second			id range			Intensity		Ray drop		
$MAE\downarrow$	$MedAE \downarrow$	Seg. recall ↑	Seg. precision \uparrow	Recall@50 \uparrow	$MAE\downarrow$	$MedAE \downarrow$	$\mathbf{MSE}^{1\mathrm{st}}\downarrow$	$MSE^{2nd}\downarrow$	Recall ↑	Precision \uparrow	$\text{IoU}\uparrow$
105.4	18.5	3.5	11.5	1.0	2258.0	1898.2	0.013	0.018	32.5	85.5	30.5
32.8	5.6	79.8	62.9	61.1	589.1	21.8	0.004	0.009	64.3	81.7	57.1
36.1	5.7	82.1	55.6	67.4	505.1	13.4	0.004	0.008	65.1	78.0	56.1
29.7	5.6	100.0	100.0	79.8	116.0	8.1	0.004	0.011	65.1	78.0	56.1

• LiDAR novel view synthesis by changing the sensor elevation angle θ , pose (x, y, z), and number of beams.

Evaluation of synthesised novel views via proxy task. In this example, the geometry in-accuracy (-100 100 cm) leads to erroneous semantic segmentation.

	-	all'	and the		TE			Vehicle		1	Background
		JUR	11. Mar			Method	Recall ↑	Precision \uparrow	IoU ↑	Recall ↑	Precision
	and a	all C	and the		15	i-NGP	93.2	85.9	<u>80.9</u>	98.3	<u>99.2</u>
		all -	AND NOT	111	TP	DS-NeRF	90.7	87.1	80.2	98.5	98.9
			20 - 20			URF	87.8	81.7	73.7	98.0	98.4
	PE	Several-	1 N		TE	Lidarsim	90.5	70.5	65.9	94.9	99.0
7	EA.	212	244	217	244	Ours	95.9	<u>87.0</u>	83.9	<u>98.3</u>	99.5
/	54	217	244	217	244		•				

Our contribution

- Additionally handle scattering and attenuation effects in adverse weather; Recover "true" geometry from biased measurements.

• Benefits of *diverging beam* profile.

_ 60

ے 40 -

• Effects of waveform discretisation and beam divergence. – 0.08 Normal map Range [m]

• Effectiveness of volume rendering for active sensing.

		TownClean		Waymo Interp.			
Method	$MAE\downarrow$	$MedAE\downarrow$	$CD\downarrow$	$MAE\downarrow$	$\text{MedAE} \downarrow$	$\mathbf{CD}\downarrow$	
i-NGP	41.0 (-1.2)	4.1 (<mark>0.0</mark>)	17.6 (<mark>0.2</mark>)	25.3 (-1.1)	4.5 (-1.0)	10.5 (-1.1)	
DS-NeRF	37.4 (-4.2)	3.0 (- <mark>0.9</mark>)	14.4 (- <mark>2.2</mark>)	27.4 (-0.8)	5.4 (-1.0)	13.6 (- <mark>0.9</mark>)	
URF	46.4 (3.0)	4.5 (<mark>0.3</mark>)	18.4 (<mark>1.6</mark>)	28.3 (<mark>0.1</mark>)	5.3 (- <mark>0.1</mark>)	13.1 (<mark>0.2</mark>)	
Ours	32.0 (-2.1)	2.3 (- 2 .5)	9.0 (- <mark>3.9</mark>)	30.8 (-2.1)	5.1 (-2.0)	12.1 (- <mark>2.3</mark>)	

↑ IoU↑

<u>97.6</u>

96.5

94.0

97.8

• Results on *Waymo NVS* dataset by varying the displacement. Numbers are reported as *MedAE/CD* [cm].

告 40

	i-NGP	DS-NeRF	URF	LiDARsim	Ours
(0.5, 0.5, 0.5)	7.0 / 14.4	7.0 / 16.0	9.0 / 19.6	16.1 / 33.1	5.4 / 13.0
(1.5, 1.5, 1.0)	8.4 / 17.6	7.8 / 18.5	11.0 / 27.5	16.5 / 37.9	5.8 / 14.3
(2.5, 2.5, 1.5)	11.6 / 28.0	9.3 / 22.8	13.9 / 35.5	17.2 / 46.3	6.4 / 18.4

Future work

Extend to handle dynamic scenes;