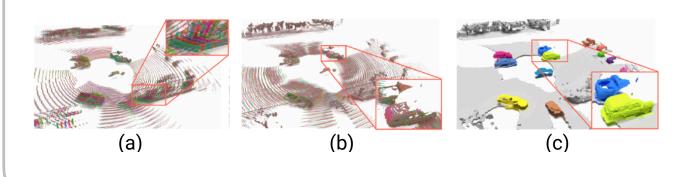
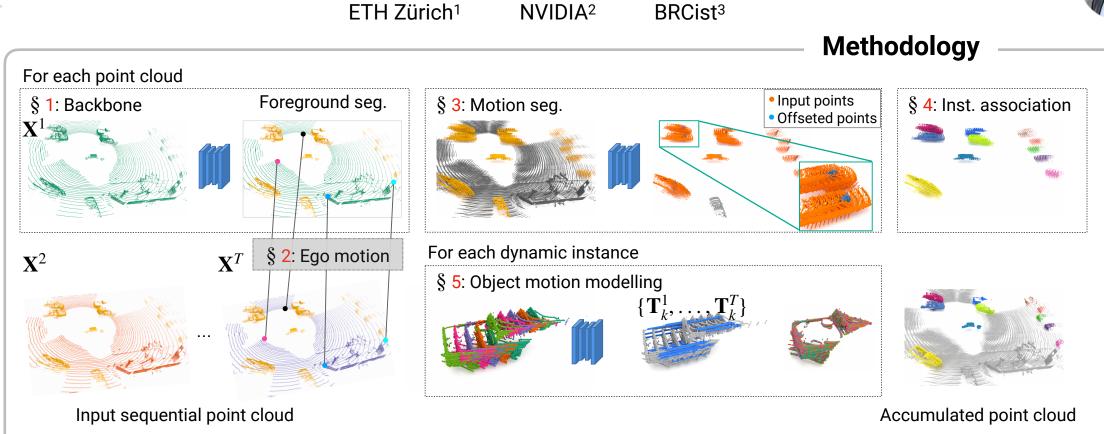
ETH zürich

Dynamic 3D Scene Analysis by Point Cloud Accumulation




Shengyu Huang¹, Zan Gojcic², Jiahui Huang³, Andreas Wieser¹, Konrad Schindler¹

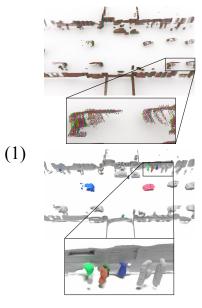
ETH Zürich¹

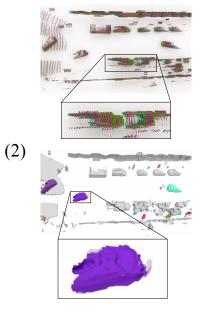
Problem statement

• Given an *ordered* sequence of T point cloud frames (a), the goal is to estimate the flow vectors that align each of the source frames to the target frame, and hence accumulate the point clouds (b). Such accumulation can serve as a pre-processing step to benefit downstream tasks like surface reconstruction (c).

• SoTA results on multi-frame scene flow evaluation.

		Static part				Dynamic foreground					
Dataset	Method	EPE avg. ↓	$\mathrm{AccS}{\uparrow}$	$\mathrm{AccR}\uparrow$	$\operatorname{ROutlier} \downarrow$	EPE avg. \downarrow	EPE med. \downarrow	$\mathrm{AccS}{\uparrow}$	$\mathrm{AccR}\uparrow$	ROutliers \downarrow	
Waymo	PPWC-Net [63]	0.414	17.6	40.2	12.1	0.475	0.201	9.0	29.3	22.4	
	FLOT [44]	0.129	65.2	85.0	2.8	0.625	0.231	9.8	27.4	33.8	
	WsRSF $[19]$	0.063	87.3	96.6	0.6	0.381	0.094	31.3	64.0	10.1	
	NSFPrior [34]	0.187	79.8	89.1	4.7	0.237	0.077	44.7	68.6	11.5	
	Ours	0.028	97.5	99.5	$\underline{0.1}$	0.197	0.062	53.3	77.5	5.9	
	Ours+	0.018	99.0	99.7	0.1	0.173	0.043	69.1	86.9	5.1	
	Ours (w. ground)	0.042	91.9	98.8	0.1	0.219	0.071	47.1	72.8	8.5	
nuScenes	PPWC-Net [63]	0.316	16.1	37.0	8.7	0.661	0.307	7.6	24.2	31.9	
	FLOT [44]	0.153	51.7	78.3	4.3	1.216	0.710	3.0	10.3	63.9	
	WsRSF $[19]$	0.195	57.4	82.6	4.8	0.539	0.204	17.9	37.4	22.9	
	NSFPrior [34]	0.584	38.9	56.7	26.9	0.707	0.222	19.3	37.8	32.0	
	Ours	0.111	65.4	88.6	<u>1.1</u>	0.301	0.146	26.6	53.4	12.1	
	Ours+	0.091	72.8	91.9	0.9	0.301	0.135	32.7	56.7	13.7	
	Ours (w. ground)	0.134	55.3	83.8	1.9	0.37	0.182	18.2	43.8	17.5	


• Generalisation across different numbers of input frames on Waymo dataset.


	3	4	5	6	7	8	9	10
static EPE avg.	0.022	0.025	0.028	0.032	0.037	0.044	0.054	0.066
dynamic EPE avg.	0.199	0.168	0.190	0.218	0.250	0.294	0.348	0.412

• Superior runtime per 5-frame (*Waymo*) and 11-frame (*nuScenes*) sample.

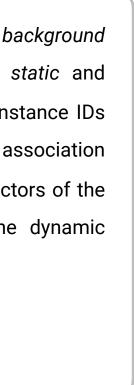
	Waymo	nuScenes		Waymo	nuScenes
PWC-Net [63]	0.608	0.990	ego-motion estimation	0.100	0.188
FLOT [44]	1.028	2.010	motion segmentation	0.024	0.040
WsRSF[19]	1.252	1.460	instance association	0.036	0.009
NSFPrior [34]	212.256	63.460	${\operatorname{TubeNet}}$	0.014	0.013
Ours	0.174	0.250			

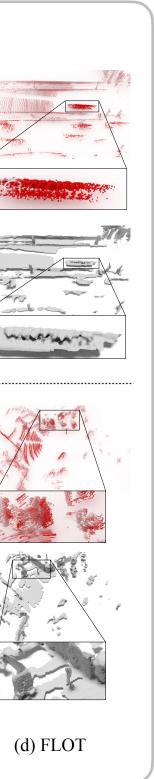
• Surface reconstruction on Waymo dataset.

Error (cm) (a) Input & GT reconstruction

• We first estimate the ego motion (§2) using predicted *background* points. Then we segment the foreground points into static and dynamic parts through motion segmentation ($\S3$). The instance IDs of the dynamic parts are obtained from spatio-temporal association (§4). Built upon the scene *rigidity*, we explain the flow vectors of the static parts by estimated ego-motion, and that of the dynamic instances by regressed per-instance rigid motion ($\S5$).

• Loss =
$$L_{ego} + L_{FG} + L_{motion} + L_{offset} + L_{obj}$$


Experimental results


• Surface reconstruction on nuScenes dataset. (1) (2) Error (cm) (b) Ours (c) NSFPrior (a) Input & GT reconstruction (c) NSFPrior (d) FLOT (b) Ours

Project page

